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2 Groupe d’ Hétérostructures et Nanostructures de Semi-conducteurs, Ecole Normale Supérieure,
BP 209, Martil, Tétouan, Morocco
3 Institut de Physique et d’Electronique de Metz, 1 Boulevard Arago, 57078 Metz, France

E-mail: eassaid@hotmail.com

Received 29 July 2002, in final form 21 November 2002
Published 20 December 2002
Online at stacks.iop.org/JPhysCM/15/175

Abstract
Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD)
have been studied theoretically in the framework of the effective mass
approximation. A finite-depth potential well has been used to describe the effect
of the quantum confinement in the InAs layer. The exciton binding energy has
been determined using the Ritz variational method. The spatial correlation
between the electron and the hole has been taken into account in the expression
for the wavefunction. It has been shown that for a fixed size b of the IQD,
the exciton binding energy depends strongly on the core radius a. Moreover, it
became apparent that there are two critical values of the core radius,acrit and a2D,
for which important changes of the exciton binding occur. The former critical
value, acrit , corresponds to a minimum of the exciton binding energy and may
be used to distinguish between tridimensional confinement and bidimensional
confinement. The latter critical value, a2D, corresponds to a maximum of the
exciton binding energy and to the most pronounced bidimensional character of
the exciton.

1. Introduction

In the last two decades, the progress achieved in crystal growth techniques has enabled
the fabrication of zero-dimensional (0D) nanoscale structures where the charge carriers are
confined in the three directions of space. The class of 0D structures is composed of clusters,
quantum crystallites (QC) and quantum dots (QDs). In this paper, we focus on homogeneous
and inhomogeneous quantum dots (IQDs) with a spherical shape. The homogeneous quantum
dots (HQDs) are semiconductor droplets embedded in a host matrix. They may be obtained by
precipitation of a semiconductor in either an isolating [1] or a semiconducting [2, 3] matrix.
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They may also be synthesized as colloidal suspensions in organic liquids [4, 5]. The energy
band gap of the host matrix is greater than that of the QD. The band offsets between the dot and
the matrix materials give rise to confinement potentials of the charge carriers. Thus, electrons
and holes are spatially localized and their energy levels are quantized and depend strongly on
the size of the HQD.

For the last ten years, it has been possible to fabricate a new class of spherical QDs using
a chemical growth process [6–8]. These spherical structures, called quantum dot–quantum
wells (QDQWs) or IQDs, are grown layer by layer. In a first step, a spherical core of a
semiconductor with a larger band gap is grown. The core plays the role of the substrate on
which a thin spherical layer of a semiconductor with a smaller band gap is deposited. Finally,
the whole structure is coated in a spherical shell of the semiconductor with the larger band
gap. The final structure contains an internal nanoheterostructure with a quantum well inside
the QD. As a consequence, electrons and holes are confined in the material with the smaller
band gap. The whole structure presents a lot of similarities with quantum well systems.

Experimental investigations on different IQDs—ZnS(core, shell)/CdSe(well) [6],
CdS/PbS [7], CdS/HgS [8], CdS/AgI, CdS/TiO2 [9], ZnSe/CdSe [10] and ZnS/CdS [11]—
have revealed outstanding and interesting properties. Indeed, due to the confinement of the
charge carriers in the thin layer between the core and the shell, the absorption band edge is
shifted to high energies and the luminescence efficiency is increased.

The theoretical studies which were devoted to IQDs have focused on the effect of the
confinement in the middle well on single-particle energies. In this way, Kortan et al [6]
have established the theory of the electronic structure in layered crystallites by means of
approximations previously used for HQDs. Haus et al [12] have used a recursive method
to determine the energies and the wavefunctions of free electrons and holes in multiple-shell
structures. Taking into account the Coulomb potential energy and describing the confinement
in a CdS/HgS/CdS structure by a finite-depth potential well, Schooss et al [13] have calculated
theoretically the 1s–1s band-to-band transition energy.

In the last decade, there have been, to our knowledge, only a few theoretical studies
which have focused on the properties of confined excitons in spherical or quasi-spherical
QDs. Those focusing on the former were performed by Bryant [14]. This author extended
the large-scale configuration interaction calculation, previously used in the study of multi-
electrons and excitons in HQDs, to spherical CdS/HgS IQDs. He has shown that the thickness
of the sandwiched layer has an important effect on the pair correlation in IQDs. He has also
shown that the model of the screened pair interaction gives a good value of the exciton binding
energy. A second study was performed by Wojs et al [15]. These authors studied the electronic
structures of lens-shaped self-assembled QDs in the presence of a magnetic field. They have
shown that the single-particle and exciton energies depend on the dot radius, the dot height,
the confining potential depth and the magnetic field strength. A third study was performed by
Ferreyra and Proetto [16]. These authors described the confinement in an IQD by means of
an infinitely deep potential well; they took into account polarization charges, they neglected
the coupling between the electron and the hole in the trial wavefunction and they considered
the Coulomb interaction as a perturbation. They have shown that for a given size of the IQD,
the exciton binding energy decreases monotonically when the core radius increases. In our
previous study, we discussed the shortcomings of this model. Indeed, the model adopted by
Ferreyra and Proetto gives results close to those from the model of a correlated pair confined
in an infinitely deep potential only for the strong-confinement regime [17, 18]. A fourth
study was performed by Kai Chang [19]. This author investigated the electronic structure of
GaAs/Ga1−x Alx As IQDs. He showed that the electronic structure depends on the core-to-
shell-radius ratio η. He has also shown that for a critical value of the ratio η, a type I–type
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Figure 1. The electron ground state energy Ee versus the core radius a for three different values of
the shell radius: b = 1, 2 and 4 a∗ . The dots correspond to the electron critical values of the core
radius ace. Inset: the schematic structure and the conduction band profile of the InP/InAs IQD.

II transition occurs. The author claimed that this transition may be observed by investigating
experimentally the intensity of the photoluminescence peak for different IQD structures. The
most recent study was made by El Khamkhami et al [17, 18]. These authors performed a
variational determination of the exciton ground state energy in an IQD. They took into account
the coupling between the electron and the hole in the trial wavefunction and determined the
exciton ground state energy in the absence and in the presence of a uniform electric field. In
the absence of the electric field, they showed that for the intermediate- and weak-confinement
regimes and for a fixed size of the IQD, the exciton binding energy presents a minimum for a
critical value of the core radius. They asserted that this critical value may be used to distinguish
between tridimensional confinement and bidimensional confinement. They have also shown
that in the presence of a uniform electric field, the Stark effect appears even for a small-size
IQD in contrast to what happens in a HQD where the Stark effect appears only for large sizes.

In the present study, we consider an InP(core)/InAs(well/shell) IQD in water [13] or in
an organic solution (see the inset of figure 1). We describe the junction between InP and InAs
by means of finite-height barriers. We model the junction between InAs and the surrounding
solution by infinite-height barriers. First, we determine analytically the ground state energies
of an electron and a hole confined in the InAs layer. Then, we focus on the ground state energy
of the 1s–1s exciton. We choose a variational wavefunction taking into account the Coulomb
correlation between the electron and the hole and determine the exciton binding energy for
weak, intermediate and strong confinements. The paper is divided into four sections. In
section 2, we present the theory of the problem. In section 3, we discuss the essential results
of the variational calculation. In section 4, we give our conclusions.
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2. Ground state and binding energy

Let us consider an InP(core)/InAs(well/shell) IQD in water [13] or in an organic solution.
The bottom of the InP conduction band is 0.4 eV above the bottom of the InAs conduction
band [12]. The top of the InP valence band is 0.58 eV below the top of the InAs valence
band [12]. Due to these band offsets, the probabilities of existence of an electron and a hole
in the core are not equal to zero. For this reason, the junction between InP and InAs can be
modelled by finite-height barriers (see the inset of figure 1).

The IQD as described above is composed of two materials with close dielectric constants
(εInP = 12.1, εInAs = 12.5 [20]) embedded in a surrounding medium with a different
dielectric constant (εH2O = 1.78 [13]). The dielectric discontinuity at the interface between
the core and the shell may be ignored since the relative difference of the dielectric constant
does not exceed 4%. The dielectric discontinuity at the interface between the shell and the
surrounding medium gives rise to an image charge which slightly modifies the electron, hole
and exciton energies. The contributions of the image charge to the free particle energies
are: − ∑∞

l=0(l + 1)((ε/εH2O) − 1)r2l
i b−2l−1/ε(l(ε/εH2O) + l + 1), i = e, h [21]. e and h

refer to the electron and the hole respectively. ε = (εInP + εInAs)/2 is the dielectric constant
over the whole IQD. The contribution of the image charge to the electron–hole interaction is:
− ∑∞

l=0(l + 1)((ε/εH2O) − 1)r l
er

l
hb−2l−1 Pl(cos θeh)/ε(l(ε/εH2O) + l + 1) [21]. It is important

to emphasize that each term of the sums given above is proportional to b−2l−1. So the image
charge contributions may be neglected as long as the shell radius b is greater than the bulk
exciton Bohr radius, which corresponds to IQDs with common sizes.

In the framework of the effective mass approximation and assuming an isotropic, parabolic
and non-degenerate band, the Hamiltonians of the single electron and the single hole are

Hi =
(

h̄

j
∇i

)
1

2m∗
i (r)

(
h̄

j
∇i

)
+ Vwi (i = e, h). (1)

The electron and hole effective masses are given in units of the free electron mass m0:

m∗
i (r) =

{
m∗

i1, ri < a (i = e, h)

m∗
i2, a < ri < b (i = e, h).

(2)

a and b are respectively the core and the shell radii (see the inset of figure 1). The electron
and hole confining potentials Vwi (i = e, h) are expressed as follows:

Vwi =




V0i , 0 < ri < a (i = e, h)

0, a < ri < b (i = e, h)

∞, b < ri (i = e, h).

(3)

In a first step, we focus on the effect of the penetration of the electron and hole
wavefunctions in the core region. We neglect the effect of the effective mass mismatch at
the junction between the core and the shell. We assume that the single-particle effective mass
over the whole structure, m∗

i (i = e, h), is equal to the average of the core and the shell
effective masses: m∗

i = (m∗
i1 + m∗

i2)/2. Consequently, the electron and hole effective masses
are respectively equal to 0.051 m0 and 0.535 m0 [12]. The influence of the effective mass
mismatch will be discussed at the end of section 3.

Subsequently, we use as the unit of energy R∗ = µe4/2ε2h̄2 = 4.187 meV, which
is equal to the absolute value of the 3D exciton energy. We use as the unit of length
a∗ = εh̄2/µe2 = 13.979 nm, which represents the 3D exciton effective Bohr radius. µ

is the reduced mass of the exciton. In these conditions, the single-particle Hamiltonians are

Hi = −κi�i + Vwi (i = e, h) (4a)
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where

κe = 1

1 + σ
(4b)

and

κh = σ

1 + σ
. (4c)

σ is the electron-to-hole effective mass ratio (σ = 0.0953). The single-particle ground state
energies and the associated wavefunctions are solutions of the Schrödinger equation:

Hi�i (ri) = Ei�i(ri ) (i = e, h). (5)

The last equation can be solved analytically; in order to determine its solutions one must
consider three different cases for every value of the shell radius b. In the first case, the single-
particle energy Ei < V0i and the core radius a < aci ; the radial part of the single-particle
wavefunction is

�i =




A1i
sh(k1i ri )

ri
, 0 < ri < a (i = e, h)

A2i
sin(k2i(ri − b))

ri
, a < ri < b (i = e, h)

(6)

where k1i = √
(V0i − Ei )/κi and k2i = √

Ei/κi . In the second case, Ei = V0i and a = aci ;
the radial part of the single-particle wavefunction is

�i =



A3i , 0 < ri < a (i = e, h)

A4i
sin(k4i (ri − b))

ri
, a < ri < b (i = e, h)

(7)

where k4i = √
V0i/κi . In the last case, Ei > V0i and a > aci ; the radial part of the single-

particle wavefunction is expressed as follows:

�i =




A5i
sin(k5iri )

ri
, 0 < ri < a (i = e, h)

A6i
sin(k6i(ri − b))

ri
, a < ri < b (i = e, h)

(8)

where k5i = √
(Ei − V0i)/κi and k6i = √

Ei/κi . In every case, the coefficients A ji

are determined by using the normalization condition and the continuity condition for the
wavefunction at the point r = a. The energy Ei is obtained by using the continuity conditions
for �i and (1/m∗

i )(d�i/dri) at the point r = a. For a given value of the IQD radius, the
transcendental equation giving the critical value of the core radius is{

a
√

V0i/κi cot((a − b)
√

V0i/κi )
} − 1 = 0 (i = e, h). (9)

Using the same units of length and energy as for the single particles, the exciton
Hamiltonian is

H = He + Hh − 2

reh
. (10)

The ground state of the confined exciton presents spherical symmetry. Thus, the wavefunction
describing this state must be expressed as a function of the distances re, rh and reh. With these
coordinates, the Laplacian operators are

�i = ∂2

∂r2
i

+
2

ri

∂

∂ri
+

r2
i − r2

j + r2
eh

rireh

∂2

∂ri ∂reh
+

∂2

∂r2
eh

+
2

reh

∂

∂reh
(i, j = e, h with i �= j).

(11)
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The exciton ground state energy and the associated wavefunction are solutions of the effective
Schrödinger equation:

H�(re, rh, reh) = E�(re, rh, reh). (12)

This equation does not admit analytical solutions, so we have to determine its ground state
solutions using an approximation method. In this paper, we opt for the variational principle.
We choose the following trial wavefunction:

�(re, rh, reh) = �e(re)�h(rh) exp(−αreh). (13)

�e(re) and �h(rh) are, respectively, the electron and hole wavefunctions. The exponential
factor is introduced in order to take into account the Coulomb attraction between the electron
and the hole. α is a variational parameter. The exciton ground state energy is obtained by
minimization of the expectation value of H with respect to α:

E = min
α

〈�|H |�〉
〈�|�〉 . (14)

Before closing this section, it is important to emphasize that for a given value of the IQD
radius b, the exciton wavefunction (equation (13)) has three different expressions according
to the core radius a. For a < ace, both �e(re) and �h(rh) are given by equation (6). When the
core radius a is between ace and ach, �e(re) is given by equation (8) while �h(rh) is given by
equation (6). Finally, for a > ach, both �e(re) and �h(rh) are given by equation (8).

3. Results and discussion

First, we present the single-particle ground state energy as a function of the IQD parameters.
Figure 1 shows the variations of the electron ground state energy Ee against the core

radius a for three different values of the shell radius b: b = 1, 2 and 4 a∗ in the two cases of
infinite and finite band offsets between InP and InAs. First, we remark that for a given size
b of the IQD, Ee increases monotonically in both cases when a increases from 0 to b. In the
case of infinite band offsets (V0e → ∞), the electron is supposed completely confined in the
InAs well, its probability of existence in the core region is equal to zero and Ee is equal to
π2/(1 + σ)(b − a)2. In the case of finite band offsets (V0e = 95.525 R∗), the electron can
slip away toward the core region. When a is equal to 0, the IQD is equivalent to an InAs
HQD and Ee is equal to π2/(1 + σ)b2. For a critical value of the core radius a equal to ace,
Ee is equal to V0e. When a is equal to b, the IQD reduces to an InP HQD and Ee is equal to
V0e + π2/(1 + σ)b2. For values of the core radius a between 0 and ace, the electron energy lies
in the interval 0 < Ee < V0e and the oscillatory part of the electron wavefunction is confined
in the InAs layer. For values of the core radius a between ace and b, Ee is greater than V0e and
the oscillatory part of the electron wavefunction is extended over the whole IQD.

With the intention of studying the influence of the reduction of the InAs thickness on the
electron–hole correlation, we define the exciton binding energy as follows:

Eb = Ee + Eh − EX. (15)

Figure 2 shows the variations of the exciton binding energy Eb versus the ratio a/b for
values of the shell radius b larger than or equal to 1 a∗: b = 1, 2 and 4 a∗. The full curves
present the variational results obtained in the case of finite band offsets between the core and
the shell of the structure (V0e = 95.525 R∗, V0h = 138.512 R∗). The dashed curves present
the variational results obtained in the case of infinite band offsets between the core and the
shell of the structure (V0e → ∞, V0h → ∞).
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Figure 2. The exciton binding energy versus the ratio a/b for intermediate- and weak-confinement
regimes (b = 1, 2 and 4 a∗). Inset: the exciton binding energy against the ratio a/b for the
strong-confinement regime (b = 0.1, 0.2, 0.3 and 0.4 a∗).

In the case of infinite band offsets between InP and InAs, the exciton is supposed
completely confined in the InAs layer. When a/b is equal to 0, the IQD is equivalent to
an InAs HQD and the three curves corresponding to b = 1, 2 and 4 a∗ tend respectively
to the limits 3.86, 2.13 and 1.36 R∗ which are in good agreement with the results obtained
by Kayanuma [22, 23]. When a/b increases, the effect of the volume reduction leads to an
enhancement of the kinetic energy and a diminution of the absolute value of the Coulomb
potential energy. As a consequence, the exciton binding energy decreases. For a critical value
(a/b)crit, there is an equilibrium between the effect of the volume reduction and the effect of
the bidimensional confinement, so the exciton binding energy is minimal. When a/b increases
from (a/b)crit to unity, the InAs layer tends to become a spherical surface and the effect of
the bidimensional confinement becomes predominant. As a consequence, the exciton binding
energy increases. When a/b tends to 1, the exciton binding energy tends to 4 R∗ which
corresponds to the well-known two-dimensional exciton binding energy [24, 25].

In the case of finite band offsets between InP and InAs, the leakage of the exciton
wavefunction toward the core region is no longer negligible, especially for the thin InAs
layer. For a/b equal to 0, the IQD reduces to an InAs HQD. When a/b increases, the exciton
binding energy decreases. For a critical value (a/b)finite

crit , the exciton binding energy is minimal.
When a/b varies from (a/b)finite

crit to (a/b)2D, the exciton binding energy increases. For a value
of the ratio a/b equal to (a/b)2D, both the electrons and the holes are confined in a thin InAs
layer; the exciton presents a bidimensional character and its binding energy is maximal. When
a/b increases from (a/b)2D to ace/b, the exciton binding energy decreases. For a/b equal
to ace/b, the electron is no longer confined in the InAs layer and the oscillatory part of its
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wavefunction is extended over the entire IQD. For a structure such as ace/b � a/b � ach/b,
the oscillatory part of the electron wavefunction is extended over the whole IQD while the
oscillatory part of the hole wavefunction is localized in the InAs layer; the exciton behaves
like a non-correlated electron–hole pair and the exciton binding energy is quasi-constant. When
a/b is equal to ach/b, the hole is no longer confined in the InAs layer and the oscillatory part
of its wavefunction is extended over the entire IQD. For a structure such as ach/b < a/b < 1,
the exciton binding energy increases. When a/b is equal to 1, the IQD reduces to an InP HQD.

The inset of figure 2 presents the variations of the exciton binding energy Eb as a function
of the ratio a/b for values of the shell radius b smaller than 1 a∗: b = 0.1, 0.2, 0.3 and
0.4 a∗. The full curves represent the variational results obtained in the case of finite band
offsets between InP and InAs. The dashed curves represent the variational results obtained in
the case of infinite band offsets between InP and InAs. The dotted curves represent the results
obtained by Ferreyra and Proetto [16] using the perturbation approach.

In the case of the perturbation method, the exciton is treated as a non-correlated electron–
hole pair completely confined in the InAs layer. We begin by analysing two particular cases:
a = 0 and b. In the former case, the nanostructure is equivalent to an HQD with a radius
equal to b; the kinetic energy gives the leading contribution to the total energy: 〈T 〉 = π2/b2,
〈V 〉 = −3.572/b and 〈H 〉 = π2/b2 − 3.572/b. In the second case, the nanostructure is
equivalent to a small spherical surface with a radius equal to b; the Coulomb energy gives the
leading contribution to the total energy: 〈T 〉 = 0, 〈V 〉 = −2/b and 〈H 〉 = −2/b. Thus, the
exciton binding energy decreases monotonically from the 3.572/b limit to the 2/b limit when
a/b increases from 0 to 1 [17, 18].

In the case of the variational method with infinite band offsets between InP and InAs,
the exciton is treated as a correlated electron–hole pair completely confined in the InAs layer.
When a/b is equal to 0, the IQD is equivalent to an InAs HQD and the four curves corresponding
to b = 0.1, 0.2, 0.3 and 0.4 a∗ tend respectively to the limits 35.97, 18.11, 12.16 and 9.19 R∗.
These last values are in good agreement with the results obtained by Kayanuma [22, 23].
When a/b increases, the volume of the structure becomes less important. As a consequence,
the exciton binding energy decreases. When a/b tends to 1, the IQD is equivalent to a small
spherical surface of InAs. The four curves corresponding to b = 0.1, 0.2, 0.3 and 0.4 a∗ tend
respectively to the limits 20.63, 10.61, 7.32 and 5.74 R∗ [24].

In the case of the variational method with finite band offsets between InP and InAs, the
exciton is treated as a correlated electron–hole pair incompletely confined in the InAs layer.
Thus, one or both of the particles can slip away toward the core region. The exciton binding
energy generally presents two minima and one maximum. For a/b equal to 0, the IQD is
equivalent to an InAs HQD. When a/b increases, the effect of the tridimensional confinement
decreases. As a result, the exciton binding energy decreases. When a/b is equal to (a/b)finite

crit ,
the exciton binding energy is minimal. For a structure such as (a/b)finite

crit < a/b < (a/b)2D, the
exciton binding energy increases. When a/b is equal to (a/b)2D, the exciton binding energy
is maximal. For a/b > (a/b)2D, the exciton binding energy decreases until a minimal value
is reached. When a/b is equal to 1, the IQD reduces to an InP HQD.

We now discuss the influence of the effective mass mismatch on the exciton binding
energy. We use the following data: m∗

e1 = 0.079 m0, m∗
e2 = 0.023 m0, m∗

h1 = 0.65 m0 and
m∗

h2 = 0.42 m0 [12]. Figure 3 shows the variations of the exciton binding energy Eb as a
function of the ratio a/b for three different values of b: b = 1, 2 and 4 a∗. The full curves
present the variational results with the effective mass mismatch effect. The dashed curves
present the variational results without the effective mass mismatch effect. We remark that
the curves appear nearly the same, so the conclusions drawn from figure 2 remain valid. The
differences between the two cases lie in two essential points: in the presence of the effective



Excitons in InP/InAs inhomogeneous quantum dots 183

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

b = 4

b = 2

b = 1
E

b 
(R

* )

a/b

Figure 3. The exciton binding energy versus the ratio a/b for intermediate- and weak-confinement
regimes with and without the effective mass mismatch effect.

mass mismatch effect, (i) the maxima of the curves are more pronounced and (ii) the plateaus
are larger. The former observation is a consequence of the fact that for a thin InAs layer, the
electron-to-hole effective mass ratio is smaller (σInAs = 0.0547). The second observation is
due to the fact that the range of a/b for which the exciton is separated is larger.

Up to now, there has been, to our knowledge, only one experimental study devoted to
InAs/InP IQDs [26]. In this study, the core plays the role of the well and the shell plays the role
of the barrier. On the other hand, there are no experimental data relating to InP/InAs IQDs. The
core (barrier)/shell (well) system abundantly studied experimentally is the CdS/HgS system.
In [27], Mews et al have investigated the absorption and fluorescence spectra of CdS/HgS
IQDs by transient hole burning and fluorescence line narrowing spectroscopy. According to
this study, the CdS/HgS IQDs with core and shell radii equal respectively to 2.35 and 2.65 nm
exhibit a band gap Eg = 2.63 eV. The model taking into account the effective mass mismatch
used in the present study gives for the same IQD a theoretical value of the effective band gap
E th

g = 2.89 eV. This IQD is capped by one monolayer of CdS in order to passivate its surface
and to eliminate surface effects [27]. The measurement of the exciton total energy leads to
the experimental value ET = 1625 meV [14]. The model used in the present work gives a
theoretical value of the exciton total energy E th

T = 1586 meV.

4. Conclusions

In conclusion, we have studied theoretically the electronic structure of an InP/InAs IQD in the
framework of the effective mass approximation. We have modelled the junction between InP
and InAs by finite-height barriers. We have determined analytically the ground state energies
of an electron and a hole confined in the IQD. We have shown that for a given value of the
IQD radius, the single-particle energies increase monotonically when the core radius increases.
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This property may be exploited in order to design IQDs with a predefined effective gap. We
have also studied the ground state of an exciton confined in the IQD. We have determined
the ground state energy by means of the Ritz variational method. We have shown that the
1s–1s exciton binding energy is dependent on the core-to-shell-radius ratio. For a given value
b of the IQD radius, we have brought attention to the existence of two critical values of the
core radius for which significant changes of the exciton binding energy take place. The first
critical value, afinite

crit , corresponds to a minimum of the exciton binding energy and may be
used to distinguish between tridimensional confinement and bidimensional confinement. The
second critical value, a2D, corresponds to a maximum of the exciton binding energy and to the
most pronounced bidimensional character of the IQD. Some preliminary calculations that we
have performed show that IQDs with a pronounced bidimensional character (a/b = (a/b)2D)

present outstanding optical properties, i.e. a great oscillator strength and a very short lifetime
of the confined exciton. These calculations also show that the oscillator strength decreases
drastically for the range of sizes for which the exciton is spatially separated (ace < a < ach).
Finally, we hope that the present study will allow a better understanding of the behaviour of
excitons confined in IQDs.
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